On the value of a multistage optimization approach for intensity-modulated radiation therapy planning*

Author:

Wood Doran,Çetinkaya SilaORCID,Gangammanavar HarshaORCID,Lu WeigoORCID,Wang JingORCID

Abstract

Abstract Objective. Intensity-modulated radiation therapy (IMRT) aims to distribute a prescribed dose of radiation to cancerous tumors while sparing the surrounding healthy tissue. A typical approach to IMRT planning uniformly divides and allocates the same dose prescription (DP) across several successive treatment sessions. A more flexible fractionation scheme would lend the capability to vary DPs and utilize updated CT scans and future predictions to adjust treatment delivery. Therefore, our objective is to develop optimization-based models and methodologies that take advantage of adapting treatment decisions across fractions by utilizing predictions of tumor evolution. Approach. We introduce a nonuniform generalization of the uniform allocation scheme that does not automatically assume equal DPs for all sessions. We develop new deterministic and stochastic multistage optimization-based models for such a generalization. Our models allow us to simultaneously identify optimal DPs and fluence maps for individual sessions. We conduct extensive numerical experiments to compare these models using multiple metrics and dose-volume histograms. Main results. Our numerical results in both deterministic and stochastic settings reveal the restrictive nature of the uniform allocation scheme. The results also demonstrate the value of nonuniform multistage models across multiple performance metrics. The improvements can be maintained even when restricting the underlying fractionation scheme to small degrees of nonuniformity. Significance. Our models and computational results support multistage stochastic programming (SP) methodology to derive ideal allocation schemes and fluence maps simultaneously. With technological and computational advancements, we expect the multistage SP methodologies to continue to serve as innovative optimization tools for radiation therapy planning applications.

Funder

Southern Methodist University Lyle Interdisciplinary Research Seed Funding

University of Texas Southwestern Radiation Oncology Medical Artificial Intelligence and Automation Laboratory Educational Experience Agreement

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3