Simultaneous multi-segment (SMSeg) EPI over multiple focal regions

Author:

Sun KaibaoORCID,Zhong ZhengORCID,Dan GuangyuORCID,Wang KezhouORCID,Karaman M MugeORCID,Luo QingfeiORCID,Zhou Xiaohong JoeORCID

Abstract

Abstract Objective. This study aimed at developing a simultaneous multi-segment (SMSeg) imaging technique using a two-dimensional (2D) RF pulse in conjunction with echo planar imaging (EPI) to image multiple focal regions. Approach. The SMSeg technique leveraged periodic replicates of the excitation profile of a 2D RF pulse to simultaneously excite multiple focal regions at different locations. These locations were controlled by rotating and scaling transmit k-space trajectories. The resulting multiple isolated focal regions were projected into a composite ‘slice’ for display. GRAPPA-based parallel imaging was incorporated into SMSeg by taking advantage of coil sensitivity variations in both the phase-encoded and slice-selection directions. The SMSeg technique was implemented at 3 T in a single-shot gradient-echo EPI sequence and demonstrated in a phantom and human brains for both anatomic imaging and functional imaging. Main results. In both the phantom and the human brain, SMSeg images from three focal regions were simultaneously acquired. SMSeg imaging enabled up to a six-fold acceleration in parallel imaging without causing appreciable residual aliasing artifacts when compared with a conventional gradient-echo EPI sequence with the same acceleration factor. In the functional imaging experiment, BOLD activations associated with a visuomotor task were simultaneously detected in two non-coplanar segments (each with a size of 240 × 30 mm2), corresponding to visual and motor cortices, respectively. Significance. Our study has demonstrated that SMSeg imaging can be a viable method for studying multiple focal regions simultaneously.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3