Development of a more accurate Geant4 quantum molecular dynamics model for hadron therapy

Author:

Sato Yoshi-hide,Sakata Dousatsu,Bolst David,Simpson Edward CORCID,Guatelli SusannaORCID,Haga AkihiroORCID

Abstract

Abstract Objective. Although in heavy-ion therapy, the quantum molecular dynamics (QMD) model is one of the most fundamental physics models providing an accurate daughter-ion production yield in the final state, there are still non-negligible differences with the experimental results. The aim of this study is to improve fragment production in water phantoms by developing a more accurate QMD model in Geant4. Approach. A QMD model was developed by implementing modern Skyrme interaction parameter sets, as well as by incorporating with an ad hoc α-cluster model in the initial nuclear state. Two adjusting parameters were selected that can significantly affect the fragment productions in the QMD model: the radius to discriminate a cluster to which nucleons belong after the nucleus–nucleus reaction, denoted by R, and the squared standard deviation of the Gaussian packet, denoted by L. Squared Mahalanobis’s distance of fragment yields and angular distributions with 1, 2, and the higher atomic number for the produced fragments were employed as objective functions, and multi-objective optimization (MOO), which make it possible to compare quantitatively the simulated production yields with the reference experimental data, was performed. Main results. The MOO analysis showed that the QMD model with modern Skyrme parameters coupled with the proposed α-cluster model, denoted as SkM* α, can drastically improve light fragments yields in water. In addition, the proposed model reproduced the kinetic energy distribution of the fragments accurately. The optimized L in SkM* α was confirmed to be realistic by the charge radii analysis in the ground state formation. Significance. The proposed framework using MOO was demonstrated to be very useful in judging the superiority of the proposed nuclear model. The optimized QMD model is expected to improve the accuracy of heavy-ion therapy dosimetry.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference62 articles.

1. Geant4-a simulation toolkit;Agostinelli;Nucl. Instrum. Methods Phys. Res. A,2003

2. Geant4 developments and applications;Allison;IEEE Trans. Nucl. Sci.,2006

3. Recent developments in Geant4;Allison;Nucl. Instrum. Methods Phys. Res. A,2016

4. Biological characteristics of carbon-ion therapy;Ando;Int. J. Radiat. Biol.,2009

5. Table of experimental nuclear ground state charge radii: an update;Angeli;At. Data Nucl. Data Tables,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3