Semi-supervised contrast learning-based segmentation of choroidal vessel in optical coherence tomography images

Author:

Liu Xiaoming,Pan Jingling,Zhang Ying,Li Xiao,Tang Jinshan

Abstract

Abstract Objective. Choroidal vessels account for 85% of all blood vessels in the eye, and the accurate segmentation of choroidal vessels from optical coherence tomography (OCT) images provides important support for the quantitative analysis of choroid-related diseases and the development of treatment plans. Although deep learning-based methods have great potential for segmentation, these methods rely on large amounts of well-labeled data, and the data collection process is both time-consuming and laborious. Approach. In this paper, we propose a novel asymmetric semi-supervised segmentation framework called SSCR, based on a student-teacher model, to segment choroidal vessels in OCT images. The proposed framework enhances the segmentation results with uncertainty-aware self-integration and transformation consistency techniques. Meanwhile, we designed an asymmetric encoder–decoder network called Pyramid Pooling SegFormer (APP-SFR) for choroidal vascular segmentation. The network combines local attention and global attention information to improve the model’s ability to learn complex vascular features. Additionally, we proposed a boundary repair module that enhances boundary confidence by utilizing a repair head to re-predict selected fuzzy points and further refines the segmentation boundary. Main results. We conducted extensive experiments on three different datasets: the ChorVessel dataset with 400 OCT images, the Meibomian Glands (MG) dataset with 400 images, and the U2OS Cell Nucleus Dataset with 200 images. The proposed method achieved an average Dice score of 74.23% on the ChorVessel dataset, which is 2.95% higher than the fully supervised network (U-Net) and outperformed other comparison methods. In both the MG dataset and the U2OS cell nucleus dataset, our proposed SSCR method achieved average Dice scores of 80.10% and 87.26%, respectively. Significance. The experimental results show that our proposed methods achieve better segmentation accuracy than other state-of-the-art methods. The method is designed to help clinicians make rapid diagnoses of ophthalmic diseases and has potential for clinical application.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference43 articles.

1. Choroidal vascularity index (CVI)-a novel optical coherence tomography parameter for monitoring patients with panuveitis?;Agrawal;PLoS One,2016a

2. Choroidal vascularity index in central serous chorioretinopathy;Agrawal;Retina,2016b

3. A simple framework for contrastive learning of visual representations;Chen,2020

4. Semi-supervised semantic segmentation with cross pseudo supervision;Chen,2021

5. Spectral-domain optical coherence tomography angiography of choroidal neovascularization;de Carlo;Ophthalmology,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3