Feasibility study of a proton CT system based on 4D-tracking and residual energy determination via time-of-flight

Author:

Ulrich-Pur FelixORCID,Bergauer Thomas,Burker Alexander,Hirtl AlbertORCID,Irmler Christian,Kaser Stefanie,Pitters Florian,Rit SimonORCID

Abstract

Abstract Objective. For dose calculations in ion beam therapy, it is vital to accurately determine the relative stopping power (RSP) distribution within the treatment volume. A suitable imaging modality to achieve the required RSP accuracy is proton computed tomography (pCT), which usually uses a tracking system and a separate residual energy (or range) detector to directly measure the RSP distribution. This work investigates the potential of a novel pCT system based on a single detector technology, namely low gain avalanche detectors (LGADs). LGADs are fast 4D-tracking detectors, which can be used to simultaneously measure the particle position and time with precise timing and spatial resolution. In contrast to standard pCT systems, the residual energy is determined via a time-of-flight (TOF) measurement between different 4D-tracking stations. Approach. To show the potential of using 4D-tracking for proton imaging, we studied and optimized the design parameters for a realistic TOF-pCT system using Monte Carlo simulations. We calculated the RSP accuracy and RSP resolution inside the inserts of the CTP404 phantom and compared the results to a simulation of an ideal pCT system. Main results. After introducing a dedicated calibration procedure for the TOF calorimeter, RSP accuracies less than 0.6% could be achieved. We also identified the design parameters with the strongest impact on the RSP resolution and proposed a strategy to further improve the image quality. Significance. This comprehensive study of the most important design aspects for a novel TOF-pCT system could help guide future hardware developments and, once implemented, improve the quality of treatment planning in ion beam therapy.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference41 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3