Domain knowledge driven 3D dose prediction using moment-based loss function

Author:

Jhanwar Gourav,Dahiya Navdeep,Ghahremani Parmida,Zarepisheh MasoudORCID,Nadeem SaadORCID

Abstract

Abstract Objective. To propose a novel moment-based loss function for predicting 3D dose distribution for the challenging conventional lung intensity modulated radiation therapy plans. The moment-based loss function is convex and differentiable and can easily incorporate clinical dose volume histogram (DVH) domain knowledge in any deep learning (DL) framework without computational overhead. Approach. We used a large dataset of 360 (240 for training, 50 for validation and 70 for testing) conventional lung patients with 2 Gy × 30 fractions to train the DL model using clinically treated plans at our institution. We trained a UNet like convolutional neural network architecture using computed tomography, planning target volume and organ-at-risk contours as input to infer corresponding voxel-wise 3D dose distribution. We evaluated three different loss functions: (1) the popular mean absolute error (MAE) loss, (2) the recently developed MAE + DVH loss, and (3) the proposed MAE + moments loss. The quality of the predictions was compared using different DVH metrics as well as dose-score and DVH-score, recently introduced by the AAPM knowledge-based planning grand challenge. Main results. Model with (MAE + moment) loss function outperformed the model with MAE loss by significantly improving the DVH-score (11%, p < 0.01) while having similar computational cost. It also outperformed the model trained with (MAE + DVH) by significantly improving the computational cost (48%) and the DVH-score (8%, p < 0.01). Significance. DVH metrics are widely accepted evaluation criteria in the clinic. However, incorporating them into the 3D dose prediction model is challenging due to their non-convexity and non-differentiability. Moments provide a mathematically rigorous and computationally efficient way to incorporate DVH information in any DL architecture. The code, pretrained models, docker container, and Google Colab project along with a sample dataset are available on our DoseRTX GitHub (https://github.com/nadeemlab/DoseRTX)

Funder

MSK Cancer Center Support Grant/Core Grant

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3