Mass segmentation for whole mammograms via attentive multi-task learning framework

Author:

Hou Xuan,Bai Yunpeng,Xie Yefan,Li Ying

Abstract

Abstract Mass segmentation in the mammogram is a necessary and challenging task in the computer-aided diagnosis of breast cancer. Most of the existing methods tend to segment the mass by manually or automatically extracting mass-centered image patches. However, manual patch extraction is time-consuming, wheras automatic patch extraction can introduce errors that will affect the performance of subsequent segmentation. In order to improve the efficiency of mass segmentation and reduce segmentation errors, we proposed a novel mass segmentation method based on an attentive multi-task learning network (MTLNet), which is an end-to-end model to accurately segment mass in the whole mammogram directly, without the need for extraction in advance with the center of mass image patch. In MTLNet, we applied group convolution to the feature extraction network, which not only reduced the redundancy of the network but also improved the capacity of feature learning. Secondly, an attention mechanism is added to the backbone to highlight the feature channels that contain rich information. Eventually, the multi-task learning framework is employed in the model, which reduces the risk of model overfitting and enables the model not only to segment the mass but also to classify and locate the mass. We used five-fold cross validation to evaluate the performance of the proposed method under detection and segmentation tasks respectively on the two public mammographic datasets INbreast and CBIS-DDSM, and our method achieved a Dice index of 0.826 on INbreast and 0.863 on CBIS-DDSM.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3