Abstract
Abstract
Objective. The aim of this study is to define the best coil orientations for transcranial magnetic stimulation (TMS) for three clinically relevant brain areas: pre-supplementary motor area (pre-SMA), inferior frontal gyrus (IFG), and posterior parietal cortex (PPC), by means of simulations in 12 realistic head models of the electric field (E-field). Methods. We computed the E-field generated by TMS in our three volumes of interest (VOI) that were delineated based on published atlases. We then analysed the maximum intensity and spatial focality for the normal and absolute components of the E-field considering different percentile thresholds. Lastly, we correlated these results with the different anatomical properties of our VOIs. Results. Overall, the spatial focality of the E-field for the three VOIs varied depending on the orientation of the coil. Further analysis showed that differences in individual brain anatomy were related to the amount of focality achieved. In general, a larger percentage of sulcus resulted in better spatial focality. Additionally, a higher normal E-field intensity was achieved when the coil axis was placed perpendicular to the predominant orientations of the gyri of each VOI. A positive correlation between spatial focality and E-field intensity was found for PPC and IFG but not for pre-SMA. Conclusions. For a rough approximation, better coil orientations can be based on the individual’s specific brain morphology at the VOI. Moreover, TMS computational models should be employed to obtain better coil orientations in non-motor regions of interest. Significance. Finding better coil orientations in non-motor regions is a challenge in TMS and seeks to reduce interindividual variability. Our individualized TMS simulation pipeline leads to fewer inter-individual variability in the focality, likely enhancing the efficacy of the stimulation and reducing the risk of stimulating adjacent, non-targeted areas.
Funder
Asociación Universitaria Iberoamericana de Postgrado
Instituto de Salud Carlos III
Consejería de Salud y Bienestar Social, Junta de Andalucía
Agencia de Innovación y Desarrollo de Andalucía
Universidad Nacional de La Plata
Ministerio de Ciencia e Innovación
Universidad de Sevilla
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献