Abstract
Abstract
Objective. X-ray diffraction (XRD) has been considered as a valuable diagnostic technology providing material specific ‘finger-print’ information i.e. XRD pattern to distinguish different biological tissues. XRD tomography (XRDT) further obtains spatial-resolved XRD pattern distribution, which has become a frontier biological sample inspection method. Currently, XRD computed tomography (XRD-CT) featured by the conventional CT scan mode with rotation has the best spatial resolution among various XRDT methods, but its scan process takes hours. Meanwhile, snapshot XRDT methods such as coded-aperture XRDT (CA-XRDT) aim at direct imaging without scan movements. With compressed-sensing acquisition applied, CA-XRDT significantly shortens data acquisition time. However, the snapshot acquisition results in a significant drop in spatial resolution. Hence, we need an advanced XRDT method that significantly accelerates XRD-CT acquisition and still maintains an acceptable imaging accuracy for biological sample inspection. Approach. Inspired by the high spatial resolution of XRD-CT from rotational scan and the fast compressed-sensing acquisition in snapshot CA-XRDT (SnapshotCA-XRDT), we proposed a new XRDT imaging method: sparse-view rotational CA-XRDT (RotationCA-XRDT). It takes SnapshotCA-XRDT as a preliminary depth-resolved XRDT method, and combines rotational scan to significantly improve the spatial resolution. A model-based iterative reconstruction (MBIR) method is adopted for RotationCA-XRDT. Moreover, we suggest a refined system model calculation for the RotationCA-XRDT MBIR which is a key factor to improve reconstruction image quality. Main results. We conducted our experimental validation based on Monte-Carlo simulation for a breast sample. The results show that the proposed RotationCA-XRDT method succeeded in producing good images for detecting 2 mm square carcinoma with a 15-view scan. The spatial resolution is significantly improved from current SnapshotCA-XRDT methods. With our refined system model, MBIR can obtain high quality images with little artifacts. Significance. In this work, we proposed a new high spatial resolution XRDT method combining coded-aperture compressed-sensing acquisition and sparse-view scan. The proposed RotationCA-XRDT method obtained significantly better image resolution than current SnapshotCA-XRDT methods in the field. It is of great potential for biological sample XRDT inspection. The proposed RotationCA-XRDT is the fastest millimetre-resolution XRDT method in the field which reduces the scan time from hours to minutes.
Funder
National Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology