Physics and technology of time-of-flight PET detectors

Author:

Schaart Dennis RORCID

Abstract

Abstract The imaging performance of clinical positron emission tomography (PET) systems has evolved impressively during the last ∼15 years. A main driver of these improvements has been the introduction of time-of-flight (TOF) detectors with high spatial resolution and detection efficiency, initially based on photomultiplier tubes, later silicon photomultipliers. This review aims to offer insight into the challenges encountered, solutions developed, and lessons learned during this period. Detectors based on fast, bright, inorganic scintillators form the scope of this work, as these are used in essentially all clinical TOF-PET systems today. The improvement of the coincidence resolving time (CRT) requires the optimization of the entire detection chain and a sound understanding of the physics involved facilitates this effort greatly. Therefore, the theory of scintillation detector timing is reviewed first. Once the fundamentals have been set forth, the principal detector components are discussed: the scintillator and the photosensor. The parameters that influence the CRT are examined and the history, state-of-the-art, and ongoing developments are reviewed. Finally, the interplay between these components and the optimization of the overall detector design are considered. Based on the knowledge gained to date, it appears feasible to improve the CRT from the values of 200–400 ps achieved by current state-of-the-art TOF-PET systems to about 100 ps or less, even though this may require the implementation of advanced methods such as time resolution recovery. At the same time, it appears unlikely that a system-level CRT in the order of ∼10 ps can be reached with conventional scintillation detectors. Such a CRT could eliminate the need for conventional tomographic image reconstruction and a search for new approaches to timestamp annihilation photons with ultra-high precision is therefore warranted. While the focus of this review is on timing performance, it attempts to approach the topic from a clinically driven perspective, i.e. bearing in mind that the ultimate goal is to optimize the value of PET in research and (personalized) medicine.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference362 articles.

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3