Fourier-based beamforming for 3D plane wave imaging and application in vector flow imaging using selective compounding

Author:

Li MenghanORCID,Liang SiyiORCID,Lu MinhuaORCID

Abstract

Abstract Objective. Ultrafast ultrasound imaging using planar or diverging waves for transmission is a promising approach for efficient 3D imaging with matrix arrays. This technique has advantages for B-mode imaging and advanced techniques, such as 3D vector flow imaging (VFI). The computation load of the cross-beam technique is associated with the number of transmit angles m and receive angles n. The full velocity vector is obtained using the least square fashion. However, the beamforming is repeated m × n times using a conventional time-domain delay-and-sum (DAS) beamformer. In the 3D case, the collection and processing of data from different beams increase the amount of data that must be processed, requiring more storage capacity and processing power. Furthermore, the large computation complexity of DAS is another major concern. These challenges translate into longer computational times, increased complexity in data processing, and difficulty in real-time applications. Approach. In response to this issue, this study proposes a novel Fourier domain beamformer for 3D plane wave imaging, which significantly increases the computational speed. Additionally, a selective compounding strategy is proposed for VFI, which reduces the beamforming process from m × n to m (where m and n represent the number of transmission and reception, respectively), effectively shortening the processing time. The underlying principle is to decompose the receive wavefront into a series of plane waves with different slant angles. Each slant angle can produce a sub-volume for coherent or selective compounding. This method does not rely on the assumption that the plane wave is perfect and the results show that our proposed beamformer is better than DAS in terms of resolution and image contrast. In the case of velocity estimation, for the Fourier-based method, only Tx angles are assigned in the beamformer and the selective compounding method produces the final image with a specialized Rx angle. Main results. Simulation studies and in vitro experiments confirm the efficacy of this new method. The proposed beamformer shows improved resolution and contrast performance compared to the DAS beamformer for B-mode imaging, with a suppressed sidelobe level. Furthermore, the proposed technique outperforms the conventional DAS method, as evidenced by lower mean bias and standard deviation in velocity estimation for VFI. Notably, the computation time has been shortened by 40 times, thus promoting the real-time application of this technique. The efficacy of this new method is verified through simulation studies and in vitro experiments and evaluated by mean bias and standard deviation. The in vitro results reveal a better velocity estimation: the mean bias is 2.3%, 3.4%, and 5.0% for vx , vy , and vz , respectively. The mean standard deviation is 1.8%, 1.7%, and 3.4%. With DAS, the evaluated mean bias is 9.8%, 4.6%, and 6.7% and the measured mean standard deviation is 7.5%, 2.5%, and 3.9%. Significance. In this work, we propose a novel Fourier-based method for both B-mode imaging and functional VFI. The new beamformer is shown to produce better image quality and improved velocity estimation. Moreover, the new VFI computation time is reduced by 40 times compared to conventional methods. This new method may pave a new way for real-time 3D VFI applications.

Funder

Chinese Academy of Sciencesand the Medical-Engineering Interdisci plinary Research Foundation of ShenZhen University.

Medical-Engineering Interdisciplinary Research Foundation of ShenZhen University

Publisher

IOP Publishing

Reference49 articles.

1. Fourier domain depth migration for plane-wave ultrasound imaging;Albulayli;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2018

2. Sparse 2-D arrays for 3-D phased array imaging-design methods;Austeng;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2002

3. Phase-based block matching applied to motion estimation with unconventional beamforming strategies;Basarab;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2009

4. Curvilinear 3-D imaging using row-column-addressed 2-D arrays with a diverging lens: feasibility study;Bouzari;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2017

5. Extended high-frame rate imaging method with limited-diffraction beams;Cheng;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3