SOLID: a novel similarity metric for mono-modal and multi-modal deformable image registration

Author:

Tzitzimpasis ParisORCID,Zachiu CornelORCID,Raaymakers Bas W,Ries Mario

Abstract

Abstract Medical image registration is an integral part of various clinical applications including image guidance, motion tracking, therapy assessment and diagnosis. We present a robust approach for mono-modal and multi-modal medical image registration. To this end, we propose the novel shape operator based local image distance (SOLID) which estimates the similarity of images by comparing their second-order curvature information. Our similarity metric is rigorously tailored to be suitable for comparing images from different medical imaging modalities or image contrasts. A critical element of our method is the extraction of local features using higher-order shape information, enabling the accurate identification and registration of smaller structures. In order to assess the efficacy of the proposed similarity metric, we have implemented a variational image registration algorithm that relies on the principle of matching the curvature information of the given images. The performance of the proposed algorithm has been evaluated against various alternative state-of-the-art variational registration algorithms. Our experiments involve mono-modal as well as multi-modal and cross-contrast co-registration tasks in a broad variety of anatomical regions. Compared to the evaluated alternative registration methods, the results indicate a very favorable accuracy, precision and robustness of the proposed SOLID method in various highly challenging registration tasks.

Funder

Topconsortia for Knowledge and Innovation—LifeSciences

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3