Silent 3D MR sequence for quantitative and multicontrast T1 and proton density imaging

Author:

Liu XinORCID,Gómez Pedro A,Solana Ana Beatriz,Wiesinger Florian,Menzel Marion IORCID,Menze Bjoern H

Abstract

Abstract This study aims to develop a silent, fast and 3D method for T1 and proton density (PD) mapping, while generating time series of T1-weighted (T1w) images with bias-field correction. Undersampled T1w images at different effective inversion times (TIs) were acquired using the inversion recovery prepared RUFIS sequence with an interleaved k-space trajectory. Unaliased images were reconstructed by constraining the signal evolution to a temporal subspace which was learned from the signal model. Parameter maps were obtained by fitting the data to the signal model, and bias-field correction was conducted on T1w images. Accuracy and repeatability of the method was accessed in repeated experiments with phantom and volunteers. For the phantom study, T1 values obtained by the proposed method were highly consistent with values from the gold standard method, R2 = 0.9976. Coefficients of variation (CVs) ranged from 0.09% to 0.83%. For the volunteer study, T1 values from gray and white matter regions were consistent with literature values, and peaks of gray and white matter can be clearly delineated on whole-brain T1 histograms. CVs ranged from 0.01% to 2.30%. The acoustic noise measured at the scanner isocenter was 2.6 dBA higher compared to the in-bore background. Rapid and with low acoustic noise, the proposed method is shown to produce accurate T1 and PD maps with high repeatability by reconstructing sparsely sampled T1w images at different TIs using temporal subspace. Our approach can greatly enhance patient comfort during examination and therefore increase the acceptance of the procedure.

Funder

European Commission

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3