A deep matrix factorization framework for identifying underlying tissue-specific patterns of DCE-MRI: applications for molecular subtype classification in breast cancer

Author:

Fan MingORCID,Yuan WeiORCID,Liu Weifen,Gao Xin,Xu Maosheng,Wang Shiwei,Li LihuaORCID

Abstract

Abstract Objective. Breast cancer is heterogeneous in that different angiogenesis and blood flow characteristics could be present within a tumor. The pixel kinetics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assume several distinct signal patterns related to specific tissue characteristics. Identification of the latent, tissue-specific dynamic patterns of intratumor heterogeneity can shed light on the biological mechanisms underlying the heterogeneity of tumors. Approach. To mine this information, we propose a deep matrix factorization-based dynamic decomposition (DMFDE) model specifically designed according to DCE-MRI characteristics. The time-series imaging data were decomposed into tissue-specific dynamic patterns and their corresponding proportion maps. The image pixel matrix and the reference matrix of population-level kinetics obtained by clustering the dynamic signals were used as the inputs. Two multilayer neural network branches were designed to collaboratively project the input matrix into a latent dynamic pattern and a dynamic proportion matrix, which was justified using simulated data. Clinical implications of DMFDE were assessed by radiomics analysis of proportion maps obtained from the tumor/parenchyma region for classifying the luminal A subtype. Main results. The decomposition performance of DMFDE was evaluated by the root mean square error and was shown to be better than that of the conventional convex analysis of mixtures (CAM) method. The predictive model with K = 3, 4, and 5 dynamic proportion maps generated AUC values of 0.780, 0.786 and 0.790, respectively, in distinguishing between luminal A and nonluminal A tumors, which are better than the CAM method (AUC = 0.726). The combination of statistical features from images with different proportion maps has the highest prediction value (AUC = 0.813), which is significantly higher than that based on CAM. Conclusion. This proposed method identified the latent dynamic patterns associated with different molecular subtypes, and radiomics analysis based on the pixel compositions of the uncovered dynamic patterns was able to determine molecular subtypes of breast cancer.

Funder

National Key R&D Program of China

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3