CoTrFuse: a novel framework by fusing CNN and transformer for medical image segmentation

Author:

Chen Yuanbin,Wang Tao,Tang Hui,Zhao Longxuan,Zhang Xinlin,Tan Tao,Gao Qinquan,Du Min,Tong TongORCID

Abstract

Abstract Medical image segmentation is a crucial and intricate process in medical image processing and analysis. With the advancements in artificial intelligence, deep learning techniques have been widely used in recent years for medical image segmentation. One such technique is the U-Net framework based on the U-shaped convolutional neural networks (CNN) and its variants. However, these methods have limitations in simultaneously capturing both the global and the remote semantic information due to the restricted receptive domain caused by the convolution operation’s intrinsic features. Transformers are attention-based models with excellent global modeling capabilities, but their ability to acquire local information is limited. To address this, we propose a network that combines the strengths of both CNN and Transformer, called CoTrFuse. The proposed CoTrFuse network uses EfficientNet and Swin Transformer as dual encoders. The Swin Transformer and CNN Fusion module are combined to fuse the features of both branches before the skip connection structure. We evaluated the proposed network on two datasets: the ISIC-2017 challenge dataset and the COVID-QU-Ex dataset. Our experimental results demonstrate that the proposed CoTrFuse outperforms several state-of-the-art segmentation methods, indicating its superiority in medical image segmentation. The codes are available at https://github.com/BinYCn/CoTrFuse.

Funder

the Artificial Intelligence and Economy Integration Platform of Fujian Province

the Fujian Health Commission

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3