Dose rate determination for preclinical total body irradiation

Author:

Zhong Yuncheng,Lai Youfang,Saha Debabrata,Story Michael D,Jia Xun,Stojadinovic StrahinjaORCID

Abstract

Abstract The accuracy of delivered radiation dose and the reproducibility of employed radiotherapy methods are key factors for preclinical radiobiology applications and research studies. In this work, ionization chamber (IC) measurements and Monte Carlo (MC) simulations were used to accurately determine the dose rate for total body irradiation (TBI), a classic radiobiologic and immunologic experimental method. Several phantom configurations, including large solid water slab, small water box and rodentomorphic mouse and rat phantoms were simulated and measured for TBI setup utilizing a preclinical irradiator XRad320. The irradiator calibration and the phantom measurements were performed using an ADCL calibrated IC N31010 following the AAPM TG-61 protocol. The MC simulations were carried out using Geant4/GATE to compute absorbed dose distributions for all phantom configurations. All simulated and measured geometries had favorable agreement. On average, the relative dose rate difference was 2.3%. However, the study indicated large dose rate deviations, if calibration conditions are assumed for a given experimental setup as commonly done for a quick determination of irradiation times utilizing lookup tables and hand calculations. In a TBI setting, the reference calibration geometry at an extended source-to-surface distance and a large reference field size is likely to overestimate true photon scatter. Consequently, the measured and hand calculated dose rates, for TBI geometries in this study, had large discrepancies: 16% for a large solid water slab, 27% for a small water box, and 31%, 36%, and 30% for mouse phantom, rat phantom, and mouse phantom in a pie cage, respectively. Small changes in TBI experimental setup could result in large dose rate variations. MC simulations and the corresponding measurements specific to a designed experimental setup are vital for accurate preclinical dosimetry and reproducibility of radiobiological findings. This study supports the well-recognized need for physics consultation for all radiobiological investigations.

Funder

NIH Clinical Center

Cancer Prevention and Research Institute of Texas

Publisher

IOP Publishing

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3