Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography
Author:
Publisher
IOP Publishing
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Link
https://iopscience.iop.org/article/10.1088/1361-6560/ab8077/pdf
Reference47 articles.
1. Harmonizing the Metabolic Syndrome
2. The story of fatty heart. A disease of Victorian times.
3. Pericardial Fat Burden on ECG-Gated Noncontrast CT in Asymptomatic Patients Who Subsequently Experience Adverse Cardiovascular Events
4. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
5. Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning-based workflow for automatic extraction of atria and epicardial adipose tissue on cardiac computed tomography in atrial fibrillation;Journal of the Chinese Medical Association;2024-02-21
2. FM-Net: A Fully Automatic Deep Learning Pipeline for Epicardial Adipose Tissue Segmentation;Lecture Notes in Computer Science;2024
3. U-Net-based Semi-supervised learning Transformer for the segmentation of Epicardial Adipose Tissue (EAT);2023 International Conference on Next Generation Electronics (NEleX);2023-12-14
4. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look;Journal of Cardiovascular Development and Disease;2023-12-04
5. Increased adipose tissue is associated with improved overall survival, independent of skeletal muscle mass in non‐small cell lung cancer;Journal of Cachexia, Sarcopenia and Muscle;2023-09-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3