The effect of non-ionizing excitations on the diffusion of ion species and inter-track correlations in FLASH ultra-high dose rate radiotherapy

Author:

Abolfath Ramin,Baikalov Alexander,Bartzsch StefanORCID,Afshordi Niayesh,Mohan RadheORCID

Abstract

Abstract Purpose. We present a microscopic mechanism that accounts for the outward burst of ‘cold’ ion species (IS) in a high-energy particle track due to coupling with ‘hot’ non-ion species (NIS). IS refers to radiolysis products of ionized molecules, whereas NIS refers to non-ionized excitations of molecules in a medium. The interaction is mediated by a quantized field of acoustic phonons, a channel that allows conversion of thermal energy of NIS to kinetic energy of IS, a flow of heat from the outer to the inner core of the track structure. Methods. We perform step-by-step Monte Carlo (MC) simulations of ionizing radiation track structures in water to score the spatial coordinates and energy depositions that form IS and NIS at atto-second time scales. We subsequently calculate the resulting temperature profiles of the tracks with MC track structure simulations and verify the results analytically using the Rutherford scattering formulation. These temperature profiles are then used as boundary conditions in a series of multi-scale atomistic molecular dynamic (MD) simulations that describe the sudden expansion and enhanced diffusive broadening of tracks initiated by the non-equilibrium spectrum of high-energy IS. We derive a stochastic coarse-grained Langevin equation of motion for IS from first-principle MD to describe the irreversible femto-second flow of thermal energy pumping from NIS to IS, mediated by quantized fields of acoustic phonons. A pair-wise Lennard-Jones potential implemented in a classical MD is then employed to validate the results calculated from the Langevin equation. Results. We demonstrate the coexistence of ‘hot’ NIS with ‘cold’ IS in the radiation track structures right after their generation. NIS, concentrated within nano-scale volumes wrapping around IS, are the main source of intensive heat-waves and the outward burst of IS due to femto-second time scale IS-NIS coupling. By comparing the transport of IS coupled to NIS with identical configurations of non-interacting IS in thermal equilibrium at room temperature, we demonstrate that the energy gain of IS due to the surrounding hot nanoscopic volumes of NIS significantly increases their effective diffusion constants. Comparing the average track separation and the time scale calculated for a deposited dose of 10 Gy and a dose rate of 40 Gy s−1, typical values used in FLASH ultra high dose rate (UHDR) experiments, we find that the sudden expansion of tracks and ballistic transport proposed in this work strengthens the hypothesis of inter-track correlations recently introduced to interpret mitigation of the biological responses at the FLASH-UHDR (Abolfath et al 2020 Med. Phys. 47, 6551–6561). Conclusions. The much higher diffusion constants predicted in the present model suggest higher inter-track chemical reaction rates at FLASH-UHDR, as well as lower intra-track reaction rates. This study explains why research groups relying on the current Monte Carlo frameworks have reported negligible inter-track overlaps, simply because of underestimation of the diffusion constants. We recommend incorporation of the IS-NIS coupling and heat exchange in all MC codes to enable these tool-kits to appropriately model reaction-diffusion rates at FLASH-UHDR. Novelty. To introduce a hypothetical pathway of outward burst of radiolysis products driven by highly localized thermal spikes wrapping around them and to investigate the interplay of the non-equilibrium spatio-temporal distribution of the chemical activities of diffusive high-energy particle tracks on inter-track correlations at FLASH-UHDR.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3