Using oxygen dose histograms to quantify voxelised ultra-high dose rate (FLASH) effects in multiple radiation modalities

Author:

Van den Heuvel FrankORCID,Vella Anna,Fiorini Francesca,Brooke MarkORCID,Hill MarkORCID,Ryan Anderson,Maughan Tim,Giaccia Amato

Abstract

Abstract Purpose. To introduce a methodology to predict tissue sparing effects in pulsed ultra-high dose rate radiation exposures which could be included in a dose-effect prediction system or treatment planning system and to illustrate it by using three published experiments. Methods and materials. The proposed system formalises the variability of oxygen levels as an oxygen dose histogram (ODH), which provides an instantaneous oxygen level at a delivered dose. The histogram concept alleviates the need for a mechanistic approach. At each given oxygen level the oxygen fixation concept is used to calculate the change in DNA-damage induction compared to the fully hypoxic case. Using the ODH concept it is possible to estimate the effect even in the case of multiple pulses, partial oxygen depletion, and spatial oxygen depletion. The system is illustrated by applying it to the seminal results by Town (Nat. 1967) on cell cultures and the pre-clinical experiment on cognitive effects by Montay-Gruel et al (2017 Radiother. Oncol. 124 365–9). Results. The proposed system predicts that a possible FLASH-effect depends on the initial oxygenation level in tissue, the total dose delivered, pulse length and pulse repetition rate. The magnitude of the FLASH-effect is the result of a redundant system, in that it will have the same specific value for a different combination of these dependencies. The cell culture data are well represented, while a correlation between the pre-clinical experiments and the calculated values is highly significant (p < 0.01). Conclusions. A system based only on oxygen related effects is able to quantify most of the effects currently observed in FLASH-radiation.

Funder

Medical Research Council

Cancer Research UK

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3