Accelerated cardiac cine MRI using spatiotemporal correlation-based hybrid plug-and-play priors (SEABUS)

Author:

Zhu Qingyong,Liu Bei,Cui Zhuo-Xu,Cheng Jing,Cao Chentao,Liu Yuanyuan,Liang DongORCID,Zhu Yanjie

Abstract

Abstract Objective. The plug-and-play prior (P3) can be flexibly coupled with multiple iterative optimizations, which has been successfully applied to the inverse problems of medical imaging. In this work, for accelerated cardiac cine magnetic resonance imaging (CC-MRI), the Spatiotemporal corrElAtion-based hyBrid plUg-and-play priorS (SEABUS) integrating a local P3 and a nonlocal P3 are introduced. Approach. Specifically, the local P3 enforces pixelwise edge-orientation consistency by conducting reference frame guided multiscale orientation projection on a subset containing a few adjacent frames; the nonlocal P3 constrains the cubewise anatomic-structure similarity by performing cube matching and 4D filtering (CM4D) on all frames. By using effectively a composite splitting algorithm (CSA), SEABUS is incorporated into a fast iterative shrinkage-thresholding algorithm and a new accelerated CC-MRI approach named SEABUS-FCSA is proposed. Main results. The experiment and algorithm analysis demonstrate the efficiency and potential of the proposed SEABUS-FCSA approach, which has the best performance in terms of reducing aliasing artifacts and capturing dynamic features in comparison with several state-of-the-art accelerated CC-MRI technologies. Significance. Our approach aims to propose a new hybrid P3 based iterative algorithm, which is not only used to improve the quality of accelerated cardiac cine imaging but also extend the FCSA methodology.

Funder

China Postdoctoral Science Foundation

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3