Design and performance simulation studies of a breast PET insert integrable into a clinical whole-body PET/MRI scanner

Author:

Pommranz C MORCID,Schmidt F PORCID,Mannheim J GORCID,Diebold S JORCID,Tenzer CORCID,Santangelo AORCID,Pichler B JORCID

Abstract

Abstract Objective. Three different breast positron emission tomography (PET) insert geometries are proposed for integration into an existing magnetic resonance imaging (MRI) breast coil (Breast Biopsy Coil, NORAS MRI products) to be used inside a whole-body PET/MRI scanner (Biograph mMR, Siemens Healthineers) to enhance the sensitivity and spatial resolution of imaging inside the breast. Approach. Monte Carlo simulations were performed to predict and compare the performance characteristics of the three geometries in terms of the sensitivity, spatial resolution, scatter fraction, and noise equivalent count rate (NECR). In addition, the background single count rate due to organ uptake in a clinical scan scenario was predicted using a realistic anthropomorphic phantom. Main results. In the center of the field of view (cFOV), absolute sensitivities of 3.1%, 2.7%, and 2.2% were found for Geometry A (detectors arranged in two cylinders), Geometry B (detectors arranged in two partial cylinders), and Geometry C (detectors arranged in two half cylinders combined with two plates), respectively. The full width at half maximum spatial resolution was determined to be 1.7 mm (Geometry A), 1.8 mm (Geometry B) and 2.0 mm (Geometry C) at 5 mm from the cFOV. Designs with multiple scintillation-crystal layers capable of determining the depth of interaction (DOI) strongly improved the spatial resolution at larger distances from the transaxial cFOV. The system scatter fractions were 33.1% (Geometries A and B) and 32.3% (Geometry C). The peak NECRs occurred at source activities of 300 MBq (Geometry A), 310 MBq (Geometry B) and 340 MBq (Geometry C). The background single-event count rates were 17.1 × 106 cps (Geometry A), 15.3 × 106 cps (Geometry B) and 14.8 × 106 cps (Geometry C). Geometry A in the three-layer DOI variant exhibited the best PET performance characteristics but could be challenging to manufacture. Geometry C had the lowest impact on the spatial resolution and the lowest sensitivity among the investigated geometries. Significance. Geometry B in the two-layer DOI variant represented an effective compromise between the PET performance and manufacturing difficulty and was found to be a promising candidate for the future breast PET insert.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3