Author:
Li Yue,He Zilong,Lu Yao,Ma Xiangyuan,Guo Yanhui,Xie Zheng,Qin Genggeng,Xu Weimin,Xu Zeyuan,Chen Weiguo,Chen Haibin
Abstract
Abstract
Computer aided detection (CADe) for breast lesions can provide an important reference for radiologists in breast cancer screening. Architectural distortion (AD) is a type of breast lesion that is difficult to detect. A majority of CADe methods focus on detecting the radial pattern, which is a main characteristic of typical ADs. However, a few atypical ADs do not exhibit such a pattern. To improve the performance of CADe for typical and atypical ADs, we propose a deep-learning-based model that used mammary gland distribution as prior information to detect ADs in digital breast tomosynthesis (DBT). First, information about gland distribution, including the Gabor magnitude, the Gabor orientation field, and a convergence map, were produced using a bank of Gabor filters and convergence measures. Then, this prior information and an original slice were input into a Faster R-CNN detection network to obtain the 2-D candidates for each slice. Finally, a 3-D aggregation scheme was employed to fuse these 2-D candidates as 3-D candidates for each DBT volume. Retrospectively, 64 typical AD volumes, 74 atypical AD volumes, and 127 normal volumes were collected. Six-fold cross-validation and mean true positive fraction (MTPF) were used to evaluate the model. Compared to an existing convergence-based model, our proposed model achieved an MTPF of 0.53 ± 0.04, 0.61 ± 0.05, and 0.45 ± 0.04 for all DBT volumes, typical + normal volumes, and atypical + normal volumes, respectively. These results were significantly better than those of 0.36 ± 0.03, 0.46 ± 0.04, and 0.28 ± 0.04 for a convergence-based model (p ≪ 0.01). These results indicate that employing the prior information of gland distribution and a deep learning method can improve the performance of CADe for AD.
Funder
Guangdong Province Key Laboratory of Computational Science
Fundamental Research Funds for the Central Universities
Science and Technology Planning Project of Guangdong Province
Guangzhou Science and Technology Creative Project
Clinical Research Startup Program of Southern Medical University by High-level University Construction Funding of Guangdong Provincial Department of Education
Clinical Research Program of Nanfang Hospital, Southern Medical University
Natural Science Foundation of Guangdong Province, China
National Key R&D Program of China
National Natural Science Foundation of China
Science and Technology Innovative Project of Guangdong Province
Construction Project of Shanghai Key Laboratory of Molecular Imaging
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献