A framework for automated time-resolved analysis of cell colony growth after irradiation

Author:

Koch Robin AORCID,Harmel Christoph,Alber Markus,Bahn EmanuelORCID

Abstract

Abstract Understanding dose-dependent survival of irradiated cells is a pivotal goal in radiotherapy and radiobiology. To this end, the clonogenic assay is the standard in vitro method, classifying colonies into either clonogenic or non-clonogenic based on a size threshold at a fixed time. Here we developed a methodological framework for the automated analysis of time course live-cell image data to examine in detail the growth dynamics of large numbers of colonies that occur during such an experiment. We developed a segmentation procedure that exploits the characteristic composition of phase-contrast images to identify individual colonies. Colony tracking allowed us to characterize colony growth dynamics as a function of dose by extracting essential information: (a) colony size distributions across time; (b) fractions of differential growth behavior; and (c) distributions of colony growth rates across all tested doses. We analyzed three data sets from two cell lines (H3122 and RENCA) and made consistent observations in line with already published results: (i) colony growth rates are normally distributed with a large variance; (ii) with increasing dose, the fraction of exponentially growing colonies decreases, whereas the fraction of delayed abortive colonies increases; as a novel finding, we observed that (iii) mean exponential growth rates decrease linearly with increasing dose across the tested range (0–10 Gy). The presented method is a powerful tool to examine live colony growth on a large scale and will help to deepen our understanding of the dynamic, stochastic processes underlying the radiation response in vitro.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3