A fast and robust constraint-based online re-optimization approach for automated online adaptive intensity modulated proton therapy in head and neck cancer

Author:

Oud MichelleORCID,Breedveld SebastiaanORCID,Rojo-Santiago JesúsORCID,Giżyńska Marta KrystynaORCID,Kroesen MichielORCID,Habraken Steven,Perkó ZoltánORCID,Heijmen BenORCID,Hoogeman MischaORCID

Abstract

Abstract Objective. In head-and-neck cancer intensity modulated proton therapy, adaptive radiotherapy is currently restricted to offline re-planning, mitigating the effect of slow changes in patient anatomies. Daily online adaptations can potentially improve dosimetry. Here, a new, fully automated online re-optimization strategy is presented. In a retrospective study, this online re-optimization approach was compared to our trigger-based offline re-planning (offlineTB re-planning) schedule, including extensive robustness analyses. Approach. The online re-optimization method employs automated multi-criterial re-optimization, using robust optimization with 1 mm setup-robustness settings (in contrast to 3 mm for offlineTB re-planning). Hard planning constraints and spot addition are used to enforce adequate target coverage, avoid prohibitively large maximum doses and minimize organ-at-risk doses. For 67 repeat-CTs from 15 patients, fraction doses of the two strategies were compared for the CTVs and organs-at-risk. Per repeat-CT, 10.000 fractions with different setup and range robustness settings were simulated using polynomial chaos expansion for fast and accurate dose calculations. Main results. For 14/67 repeat-CTs, offlineTB re-planning resulted in <50% probability of D 98% ≥ 95% of the prescribed dose (D pres) in one or both CTVs, which never happened with online re-optimization. With offlineTB re-planning, eight repeat-CTs had zero probability of obtaining D 98% ≥ 95%D pres for CTV7000, while the minimum probability with online re-optimization was 81%. Risks of xerostomia and dysphagia grade ≥ II were reduced by 3.5 ± 1.7 and 3.9 ± 2.8 percentage point [mean ± SD] (p < 10−5 for both). In online re-optimization, adjustment of spot configuration followed by spot-intensity re-optimization took 3.4 min on average. Significance. The fast online re-optimization strategy always prevented substantial losses of target coverage caused by day-to-day anatomical variations, as opposed to the clinical trigger-based offline re-planning schedule. On top of this, online re-optimization could be performed with smaller setup robustness settings, contributing to improved organs-at-risk sparing.

Funder

Varian, a Siemens Healthineers Company

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3