Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning

Author:

Zheng Rencheng,Wang Luna,Wang Chengyan,Yu Xuchen,Chen Weibo,Li Yan,Li Weixia,Yan Fuhua,Wang HeORCID,Li Ruokun

Abstract

Abstract Background and objective. Early detection of hepatocellular carcinoma (HCC) is crucial for clinical management. Current studies have reported large HCC detections using automatic algorithms, but there is a lack of research on automatic detection of small HCCs (sHCCs). This study is to investigate the feasibility of automatic detection of sHCC (≤2 cm) based on pattern matching and deep learning (PM-DL) model. Materials and methods. A retrospective study included 5376 image sets from 56 cirrhosis patients (28 sHCC patients with 32 pathologically confirmed lesions and 28 non-HCC cirrhosis patients) in the training-validation cohort to build and validate the model through five-fold cross-validation. In addition, an external test cohort including 6144 image sets from 64 cirrhosis patients (32 sHCC patients with 38 lesions and 32 non-HCC cirrhosis patients) was applied to further verify the generalization ability of the model. The proposed PM-DL model consisted of three main steps: 3D co-registration and liver segmentation, screening of suspicious lesions on diffusion-weighted imaging images based on pattern matching algorithm, and identification/segmentation of sHCC lesions on dynamic contrast-enhanced images with convolutional neural network. Results. The PM-DL model achieved a sensitivity of 89.74% and a positive predictive value of 85.00% in the external test cohort for per-lesion analysis. No significant difference was observed in volumes (P = 0.13) and the largest sizes (P = 0.89) between manually delineated and segmented lesions. The DICE coefficient reached 0.77 ± 0.16. Similar performances were identified in the validation cohort. Moreover, the PM-DL model outperformed Liver Imaging Reporting and Data System (LI-RADS) in sensitivity (probable HCCs: LR-5 or LR-4, P = 0.18; definite HCCs: LR-5, P < 0.001), with a similar high specificity for per-patient analysis. Conclusion. The PM-DL model may be feasible for accurate automatic detection of sHCC in cirrhotic liver.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3