Development and characterization of modular mouse phantoms for end-to-end testing and training in radiobiology experiments

Author:

Wegner MarieORCID,Frenzel Thorsten,Krause DieterORCID,Gargioni ElisabettaORCID

Abstract

Abstract Objective. In radiation oncology, experiments are often carried out using mice as a model for in vivo research studies. Due to recent technological advances in the development of high-precision small-animal irradiation facilities, the importance of quality assurance for both dosimetry and imaging is increasing. Additive manufacturing (AM) offers the possibility to produce complex models from a three-dimensional data set and to build cost-effective phantoms that can easily be adapted to different purposes. The aim of this work was therefore to develop detailed anatomical mouse models for quality assurance and end-to-end testing of small-animal irradiation and imaging by means of AM. Approach. Two mouse phantom concepts were designed, constructed, and examined for this purpose. The first model includes cavities corresponding to the most important organs. The final solid model was constructed using AM in two separate parts that can be attached with a plug connection after filling these cavities with tissue-equivalent mixtures. Moreover, different radiation dosimeters can be placed in the lower part of the model. For the second concept, AM was used for building modules like the phantom outer shell and bones, so that different mixtures can be used as a filling, without modifying the phantom structure. Main results. CT as well as Micro-CT scans of both concepts showed an excellent quality and adequate image contrast, with material attenuation properties close to those of mouse tissues, apart from the current bone surrogates. Radiation dose measurements with radiochromic films were, with some exceptions in areas with larges bone volumes, in agreement with calculations within less than ±4%. Significance. AM shows great potential for the development of mouse models that are inexpensive, easy to adapt, and accurate, thus enabling their use for quality assurance in small-animal radiotherapy and imaging. The introduction of such 3D-printable mouse phantoms in the workflow could also significantly reduce the use of living animals for optimization and testing of new imaging and irradiation protocols.

Funder

Behörde für Wissenschaft, Forschung und Gleichstellung

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3