Enhancing digital tomosynthesis (DTS) for lung radiotherapy guidance using patient-specific deep learning model

Author:

Jiang Zhuoran,Yin Fang-Fang,Ge Yun,Ren Lei

Abstract

Abstract Digital tomosynthesis (DTS) has been proposed as a fast low-dose imaging technique for image-guided radiation therapy (IGRT). However, due to the limited scanning angle, DTS reconstructed by the conventional FDK method suffers from significant distortions and poor plane-to-plane resolutions without full volumetric information, which severely limits its capability for image guidance. Although existing deep learning-based methods showed feasibilities in restoring volumetric information in DTS, they ignored the inter-patient variabilities by training the model using group patients. Consequently, the restored images still suffered from blurred and inaccurate edges. In this study, we presented a DTS enhancement method based on a patient-specific deep learning model to recover the volumetric information in DTS images. The main idea is to use the patient-specific prior knowledge to train the model to learn the patient-specific correlation between DTS and the ground truth volumetric images. To validate the performance of the proposed method, we enrolled both simulated and real on-board projections from lung cancer patient data. Results demonstrated the benefits of the proposed method: (1) qualitatively, DTS enhanced by the proposed method shows CT-like high image quality with accurate and clear edges; (2) quantitatively, the enhanced DTS has low-intensity errors and high structural similarity with respect to the ground truth CT images; (3) in the tumor localization study, compared to the ground truth CT-CBCT registration, the enhanced DTS shows 3D localization errors of ≤0.7 mm and ≤1.6 mm for studies using simulated and real projections, respectively; and (4), the DTS enhancement is nearly real-time. Overall, the proposed method is effective and efficient in enhancing DTS to make it a valuable tool for IGRT applications.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3