CNN-based fully automatic mitral valve extraction using CT images and existence probability maps

Author:

Masuda YukiteruORCID,Ishikawa Ryo,Tanaka ToruORCID,Aoyama Gakuto,Kawashima Keitaro,Chapman James V,Asami Masahiko,Pham Michael Huy CuongORCID,Kofoed Klaus Fuglsang,Sakaguchi Takuya,Satoh Kiyohide

Abstract

Abstract Objective. Accurate extraction of mitral valve shape from clinical tomographic images acquired in patients has proven useful for planning surgical and interventional mitral valve treatments. However, manual extraction of the mitral valve shape is laborious, and the existing automatic extraction methods have not been sufficiently accurate. In this paper, we propose a fully automated method of extracting mitral valve shape from computed tomography (CT) images for the all phases of the cardiac cycle. Approach. This method extracts the mitral valve shape based on DenseNet using both the original CT image and the existence probability maps of the mitral valve area inferred by U-Net as input. A total of 1585 CT images from 204 patients with various cardiac diseases including mitral regurgitation were collected and manually annotated for mitral valve region. The proposed method was trained and evaluated by 10-fold cross validation using the collected data and was compared with the method without the existence probability maps. Main results. The mean error of shape extraction error in the proposed method is 0.88 mm, which is an improvement of 0.32 mm compared with the method without the existence probability maps. Significance. We present a novel fully automatic mitral valve extraction method from input to output for all phases of 4D CT images. We suggest that the accuracy of mitral valve shape extraction is improved by using existence probability maps.

Funder

Canon Inc.

Canon Medical Systems Corporation

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3