Optimizing robot motion for robotic ultrasound-guided radiation therapy

Author:

Schlüter Matthias,Fürweger Christoph,Schlaefer Alexander

Abstract

Abstract An important aspect of robotic radiation therapy is active compensation of target motion. Recently, ultrasound has been proposed to obtain real-time volumetric images of abdominal organ motion. One approach to realize flexible probe placement throughout the treatment fraction is based on a robotic arm holding the ultrasound probe. However, the probe and the robot holding it may obstruct some of the beams with a potentially adverse effect on the plan quality. This can be mitigated by using a kinematically redundant robot, which allows maintaining a steady pose of the ultrasound probe while moving its elbow in order to minimize beam blocking. Ultimately, the motion of both the beam source carrying and the ultrasound probe holding robot contributes to the overall treatment time, i.e. beam delivery and robot motion. We propose an approach to optimize the motion and coordination of both robots based on a generalized traveling salesman problem. Furthermore, we study an application of the model to a prostate treatment scenario. Because the underlying optimization problem is hard, we compare results from a state-of-the-art heuristic solver and an approximation scheme with low computational effort. Our results show that integration of the robot holding the ultrasound probe is feasible with acceptable overhead in overall treatment time. For clinically realistic velocities of the robots, the overhead is less than 4% which is a small cost for the added benefit of continuous, volumetric, and non-ionizing tracking of organ motion over periodic x-ray-based tracking.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3