Thermoplastic 3D printing technology using a single filament for producing realistic patient-derived breast models

Author:

Dukov NikolayORCID,Bliznakova KristinaORCID,Okkalidis Nikiforos,Teneva Tsvetelina,Encheva Elitsa,Bliznakov ZhivkoORCID

Abstract

Abstract Objective. This work describes an approach for producing physical anthropomorphic breast phantoms from clinical patient data using three-dimensional (3D) fused-deposition modelling (FDM) printing. Approach. The source of the anthropomorphic model was a clinical Magnetic Resonance Imaging (MRI) patient image set, which was segmented slice by slice into adipose and glandular tissues, skin and tumour formations; thus obtaining a four component computational breast model. The segmented tissues were mapped to specific Hounsfield Units (HU) values, which were derived from clinical breast Computed Tomography (CT) data. The obtained computational model was used as a template for producing a physical anthropomorphic breast phantom using 3D printing. FDM technology with only one polylactic acid filament was used. The physical breast phantom was scanned at Siemens SOMATOM Definition CT. Quantitative and qualitative evaluation were carried out to assess the clinical realism of CT slices of the physical breast phantom. Main results. The comparison between selected slices from the computational breast phantom and CT slices of the physical breast phantom shows similar visual x-ray appearance of the four breast tissue structures: adipose, glandular, tumour and skin. The results from the task-based evaluation, which involved three radiologists, showed a high degree of realistic clinical radiological appearance of the modelled breast components. Measured HU values of the printed structures are within the range of HU values used in the computational phantom. Moreover, measured physical parameters of the breast phantom, such as weight and linear dimensions, agreed very well with the corresponding ones of the computational breast model. Significance. The presented approach, based on a single FDM material, was found suitable for manufacturing of a physical breast phantom, which mimics well the 3D spatial distribution of the different breast tissues and their x-ray absorption properties. As such, it could be successfully exploited in advanced x-ray breast imaging research applications.

Funder

H2020 Marie Sklodowska-Curie Actions

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3