Power-law spectrum-based objective function to train a generative adversarial network with transfer learning for the synthetic breast CT image

Author:

Kim GihunORCID,Baek Jongduk

Abstract

Abstract Objective. This paper proposes a new objective function to improve the quality of synthesized breast CT images generated by the GAN and compares the GAN performances on transfer learning datasets from different image domains. Approach. The proposed objective function, named beta loss function, is based on the fact that x-ray-based breast images follow the power-law spectrum. Accordingly, the exponent of the power-law spectrum (beta value) for breast CT images is approximately two. The beta loss function is defined in terms of L1 distance between the beta value of synthetic images and validation samples. To compare the GAN performances for transfer learning datasets from different image domains, ImageNet and anatomical noise images are used in the transfer learning dataset. We employ styleGAN2 as the backbone network and add the proposed beta loss function. The patient-derived breast CT dataset is used as the training and validation dataset; 7355 and 212 images are used for network training and validation, respectively. We use the beta value evaluation and Fréchet inception distance (FID) score for quantitative evaluation. Main results. For qualitative assessment, we attempt to replicate the images from the validation dataset using the trained GAN. Our results show that the proposed beta loss function achieves a more similar beta value to real images and a lower FID score. Moreover, we observe that the GAN pretrained with anatomical noise images achieves better equality than ImageNet for beta value evaluation and FID score. Finally, the beta loss function with anatomical noise as the transfer learning dataset achieves the lowest FID score. Significance. Overall, the GAN using the proposed beta loss function with anatomical noise images as the transfer learning dataset provides the lowest FID score among all tested cases. Hence, this work has implications for developing GAN-based breast image synthesis methods for medical imaging applications.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3