Topological structure and global features enhanced graph reasoning model for non-small cell lung cancer segmentation from CT

Author:

Zhang Tiangang,Wang Kai,Cui Hui,Jin QiangguoORCID,Cheng Peng,Nakaguchi Toshiya,Li Changyang,Ning Zhiyu,Wang Linlin,Xuan Ping

Abstract

Abstract Objective. Accurate and automated segmentation of lung tumors from computed tomography (CT) images is critical yet challenging. Lung tumors are of various sizes and locations and have indistinct boundaries adjacent to other normal tissues. Approach. We propose a new segmentation model that can integrate the topological structure and global features of image region nodes to address the challenges. Firstly, we construct a weighted graph with image region nodes. The graph topology reflects the complex spatial relationships among these nodes, and each node has its specific attributes. Secondly, we propose a node-wise topological feature learning module based on a new graph convolutional autoencoder (GCA). Meanwhile, a node information supplementation (GNIS) module is established by integrating specific features of each node extracted by a convolutional neural network (CNN) into each encoding layer of GCA. Afterwards, we construct a global feature extraction model based on multi-layer perceptron (MLP) to encode the features learnt from all the image region nodes which are crucial complementary information for tumor segmentation. Main results. Ablation study results over the public lung tumor segmentation dataset demonstrate the contributions of our major technical innovations. Compared with other segmentation methods, our new model improves the segmentation performance and has generalization ability on different 3D image segmentation backbones. Our model achieved Dice of 0.7827, IoU of 0.6981, and HD of 32.1743 mm on the public dataset 2018 Medical Segmentation Decathlon challenge, and Dice of 0.7004, IoU of 0.5704 and HD of 64.4661 mm on lung tumor dataset from Shandong Cancer Hospital. Significance. The novel model improves automated lung tumor segmentation performance especially the challenging and complex cases using topological structure and global features of image region nodes. It is of great potential to apply the model to other CT segmentation tasks.

Funder

STU Scientific Research Initiation Grant

Natural Science Foundation of Heilongjiang Province

Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference25 articles.

1. Structural deep clustering network;Bo,2020

2. Hsn: hybrid segmentation network for small cell lung cancer segmentation;Chen;IEEE Access,2019

3. Graph-based global reasoning networks;Chen,2019

4. 3d u-net: learning dense volumetric segmentation from sparse annotation;Çiçek,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3