Assessing the advantages of CFR-PEEK over titanium spinal stabilization implants in proton therapy—a phantom study

Author:

Poel RORCID,Belosi F,Albertini F,Walser M,Gisep A,Lomax A J,Weber D C

Abstract

Abstract High-density materials, such as titanium, used for spinal stabilization, introduces several critical issues in proton therapy (PT). Artefacts affect both contouring and dose calculation. Subsequently, artefacts need to be corrected which is a time-consuming process. Besides, titanium causes proton interactions that are unaccounted for in dose calculation. The result is a suboptimal treatment plan, and indeed decreased local controls have been reported for these patients. Carbon fiber reinforced polyetheretherketone (CFR-PEEK) implant material, which is of low density, potentially solves these issues. For this study, we designed a unique phantom to compare the effects of titanium and CFR-PEEK implants in PT. The phantom contains four interchangeable spinal inserts representing a native spine, and three different spinal stabilizations consisting of titanium only, CFR-PEEK only, and a combination of titanium and CFR-PEEK. All phantom scenarios received the standard treatment workup. Two planning approaches were investigated: a single field plan and a multi-field optimized plan with spinal cord sparing. For both plans we analyzed the following aspects: total volume of artefacts on CT images, time required for artefact correction, effect of planning CT correction on dose calculation, plan robustness to range and set up uncertainties, and finally the discrepancy between the calculated dose and the delivered dose with Gafchromic® film. The CFR-PEEK implant had a 90% reduction of artefacts on CT images and subsequently severely reduced the time for artefact correction with respect to the titanium-only implant. Furthermore, the CFR-PEEK as opposed to titanium did not influence the robustness of the plan. Finally, the titanium implants led to hardware-related discrepancies between the planned and the measured dose while the CFR-PEEK implant showed good agreement. As opposed to titanium, CFR-PEEK has none to minor effects on PT. The use of CFR-PEEK is expected to optimize treatment and possibly improve outcomes for patients that require spinal stabilization.

Funder

icotec ag

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3