Imaging depth adaptive resolution enhancement for optical coherence tomography via deep neural network with external attention

Author:

Ren ShangjieORCID,Shen Xiongri,Xu Jingjiang,Li Liang,Qiu Haixia,Jia Haibo,Wu Xining,Chen DefuORCID,Zhao Shiyong,Yu Bo,Gu Ying,Dong FengORCID

Abstract

Abstract Optical coherence tomography (OCT) is a promising non-invasive imaging technique that owns many biomedical applications. In this paper, a deep neural network is proposed for enhancing the spatial resolution of OCT en face images. Different from the previous reports, the proposed can recover high-resolution en face images from low-resolution en face images at arbitrary imaging depth. This kind of imaging depth adaptive resolution enhancement is achieved through an external attention mechanism, which takes advantage of morphological similarity between the arbitrary-depth and full-depth en face images. Firstly, the deep feature maps are extracted by a feature extraction network from the arbitrary-depth and full-depth en face images. Secondly, the morphological similarity between the deep feature maps is extracted and utilized to emphasize the features strongly correlated to the vessel structures by using the external attention network. Finally, the SR image is recovered from the enhanced feature map through an up-sampling network. The proposed network is tested on a clinical skin OCT data set and an open-access retinal OCT dataset. The results show that the proposed external attention mechanism can suppress invalid features and enhance significant features in our tasks. For all tests, the proposed SR network outperformed the traditional image interpolation method, e.g. bi-cubic method, and the state-of-the-art image super-resolution networks, e.g. enhanced deep super-resolution network, residual channel attention network, and second-order attention network. The proposed method may increase the quantitative clinical assessment of micro-vascular diseases which is limited by OCT imaging device resolution.

Funder

National Natural Science Foundation of China

CAMS Innovation Fund for Medical Sciences

Guangdong Basic and Applied Basic Research Foundation

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Covid-19 early symptoms with higher accuracy using novel chest X-rays images using VGG-16 network comparing residual neural network;INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING, AND TECHNOLOGY 2022: Conference Proceedings;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3