Iterative tomographic reconstruction with TV prior for low-dose CBCT dental imaging

Author:

Friot--Giroux LouiseORCID,Peyrin FrançoiseORCID,Maxim VoichitaORCID

Abstract

Abstract Objective. Cone-beam computed tomography is becoming more and more popular in applications such as 3D dental imaging. Iterative methods compared to the standard Feldkamp algorithm have shown improvements in image quality of reconstruction of low-dose acquired data despite their long computing time. An interesting aspect of iterative methods is their ability to include prior information such as sparsity-constraint. While a large panel of optimization algorithms along with their adaptation to tomographic problems are available, they are mainly studied on 2D parallel or fan-beam data. The issues raised by 3D CBCT and moreover by truncated projections are still poorly understood. Approach. We compare different carefully designed optimization schemes in the context of realistic 3D dental imaging. Besides some known algorithms, SIRT-TV and MLEM, we investigate the primal-dual hybrid gradient (PDHG) approach and a newly proposed MLEM-TV optimizer. The last one is alternating EM steps and TV-denoising, combination not yet investigated for CBCT. Experiments are performed on both simulated data from a 3D jaw phantom and data acquired with a dental clinical scanner. Main results. With some adaptations to the specificities of CBCT operators, PDHG and MLEM-TV algorithms provide the best reconstruction quality. These results were obtained by comparing the full-dose image with a low-dose image and an ultra low-dose image. Significance. The convergence speed of the original iterative methods is hampered by the conical geometry and significantly reduced compared to parallel geometries. We promote the pre-conditioned version of PDHG and we propose a pre-conditioned version of the MLEM-TV algorithm. To the best of our knowledge, this is the first time PDHG and convergent MLEM-TV algorithms are evaluated on experimental dental CBCT data, where constraints such as projection truncation and presence of metal have to be jointly overcome.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Deep-Learning Methods for the Enhancement of Experimental Low Dose Dental CBCT Volumes;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

2. A non-local total generalized variation regularization reconstruction method for sparse-view x-ray CT;Measurement Science and Technology;2024-01-05

3. Suppression of Artifacts Caused by Phase Errors and Noises in X-Ray Phase Computed Tomography;IEEE Photonics Technology Letters;2023-12-01

4. Image Quality Improvement in Sparse-View X-Ray Phase-Contrast Trimodal CBCT With Multifrequency Fringe Modulation and Iterative Methods;IEEE Transactions on Radiation and Plasma Medical Sciences;2023-07

5. The “Dedicated” C.B.C.T. in Dentistry;International Journal of Environmental Research and Public Health;2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3