MUE-CoT: multi-scale uncertainty entropy-aware co-training framework for left atrial segmentation

Author:

Hao DechenORCID,Li HualingORCID,Zhang YonglaiORCID,Zhang Qi

Abstract

Abstract Objective. Accurate left atrial segmentation is the basis of the recognition and clinical analysis of atrial fibrillation. Supervised learning has achieved some competitive segmentation results, but the high annotation cost often limits its performance. Semi-supervised learning is implemented from limited labeled data and a large amount of unlabeled data and shows good potential in solving practical medical problems. Approach. In this study, we proposed a collaborative training framework for multi-scale uncertain entropy perception (MUE-CoT) and achieved efficient left atrial segmentation from a small amount of labeled data. Based on the pyramid feature network, learning is implemented from unlabeled data by minimizing the pyramid prediction difference. In addition, novel loss constraints are proposed for co-training in the study. The diversity loss is defined as a soft constraint so as to accelerate the convergence and a novel multi-scale uncertainty entropy calculation method and a consistency regularization term are proposed to measure the consistency between prediction results. The quality of pseudo-labels cannot be guaranteed in the pre-training period, so a confidence-dependent empirical Gaussian function is proposed to weight the pseudo-supervised loss. Main results. The experimental results of a publicly available dataset and an in-house clinical dataset proved that our method outperformed existing semi-supervised methods. For the two datasets with a labeled ratio of 5%, the Dice similarity coefficient scores were 84.94% ± 4.31 and 81.24% ± 2.4, the HD95 values were 4.63 mm ± 2.13 and 3.94 mm ± 2.72, and the Jaccard similarity coefficient scores were 74.00% ± 6.20 and 68.49% ± 3.39, respectively. Significance. The proposed model effectively addresses the challenges of limited data samples and high costs associated with manual annotation in the medical field, leading to enhanced segmentation accuracy.

Funder

Key R&D program of Shanxi Province

Natural Science Foundation of Liaoning Province

Natural Science Foundation of Shanxi Province

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3