Concurrent kilovoltage CBCT imaging and megavoltage beam delivery: suppression of cross-scatter with 2D antiscatter grids and grid-based scatter sampling

Author:

Bayat Farhang,Eldib Mohamed Elsayed,Kavanagh Brian,Miften Moyed,Altunbas Cem

Abstract

Abstract Objective. The concept of using kilovoltage (kV) and megavoltage (MV) beams concurrently has potential applications in cone beam computed tomography (CBCT) guided radiation therapy, such as single breath hold scans, metal artifact reduction, and simultaneous imaging during MV treatment delivery. However, MV cross-scatter generated during MV beam delivery degrades CBCT image quality. To address this, a 2D antiscatter grid and a cross-scatter correction method were investigated in the context of high dose MV treatment delivery. Approach. A 3D printed, tungsten 2D antiscatter grid prototype was utilized in kV CBCT scans to reduce MV cross-scatter fluence during concurrent MV beam delivery. Remaining cross-scatter in projections was corrected by using the 2D grid itself as a cross-scatter intensity sampling device, referred to as grid-based scatter sampling (GSS). To test this approach, kV CBCT acquisitions were performed while delivering 6 and 10 MV beams, mimicking high dose rate treatment delivery scenarios. kV and MV beam deliveries were not synchronized to eliminate MV beam delivery interruption. MV cross-scatter suppression performance of the proposed approach was evaluated in projections and CBCT images of phantoms. Main results. 2D grid reduced the intensity of MV cross-scatter in kV projections by a factor of 3 on the average, when compared to conventional antiscatter grid. Remaining cross scatter as measured by the GSS method was within 7% of measured reference intensity values, and subsequently corrected. CBCT image quality was improved substantially during concurrent kV–MV beam delivery. Median Hounsfield Unit (HU) inaccuracy was up to 182 HU without our methods, and it was reduced to a median 6.5 HU with our 2D grid and scatter correction approach. Our methods provided a factor of 2–6 improvement in contrast-to-noise ratio. Significance. This investigation demonstrates the utility of 2D antiscatter grids and grid-based scatter sampling in suppressing MV cross-scatter. Our approach successfully minimized the effects of MV cross-scatter in concurrent kV CBCT imaging and high dose MV treatment delivery scenarios. Hence, robust MV cross-scatter suppression is potentially feasible without MV beam delivery interruption or compromising kV image acquisition rate.

Funder

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3