How does the electric field induced by tDCS influence motor-related connectivity? Model-guided perspectives

Author:

Fernandes Sofia RitaORCID,Callejón-Leblic M Amparo,Ferreira Hugo Alexandre

Abstract

Abstract Over the last decade, transcranial direct current stimulation (tDCS) has been applied not only to modulate local cortical activation, but also to address communication between functionally-related brain areas. Stimulation protocols based on simple two-electrode placements are being replaced by multi-electrode montages to target intra- and inter-hemispheric neural networks using multichannel/high definition paradigms. Objective. This study aims to investigate the characteristics of electric field (EF) patterns originated by tDCS experiments addressing changes in functional brain connectivity. Methods. A previous selection of tDCS experimental studies aiming to modulate motor-related connectivity in health and disease was conducted. Simulations of the EF induced in the cortex were then performed for each protocol selected. The EF magnitude and orientation are determined and analysed in motor-related cortical regions for five different head models to account for inter-subject variability. Functional connectivity outcomes obtained are qualitatively analysed at the light of the simulated EF and protocol characteristics, such as electrode position, number and stimulation dosing. Main findings. The EF magnitude and orientation predicted by computational models can be related with the ability of tDCS to modulate brain functional connectivity. Regional differences in EF distributions across subjects can inform electrode placements more susceptible to inter-subject variability in terms of brain connectivity-related outcomes. Significance. Neuronal facilitation/inhibition induced by tDCS fields may indirectly influence intra and inter-hemispheric connectivity by modulating neural components of motor-related networks. Optimization of tDCS using computational models is essential for adequate dosing delivery in specific networks related to clinically relevant connectivity outcomes.

Funder

Fundação para a Ciência e a Tecnologia

Ministerio de Ciencia e Innovación

Andalusian Government/FEDER

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3