PET-ABC: fully Bayesian likelihood-free inference for kinetic models

Author:

Fan Yanan,Emvalomenos Gaelle,Grazian Clara,Meikle Steven RORCID

Abstract

Abstract Aims. We describe an intuitive, easy to use method called PET-ABC that enables full Bayesian statistical inference from single subject dynamic PET data. The performance of PET-ABC was compared with weighted non-linear least squares (WNLS) in terms of reliability of kinetic parameter estimation and statistical power for model selection. Methods. Dynamic PET data based on 1-tissue and 2-tissue compartmental models were simulated with 2 noise models and 3 noise levels. PET-ABC was used to evaluate the reliability of parameter estimates under each condition. It was also used to perform model selection for a simulated noisy dataset composed of a mixture of 1- and 2-tissue compartment kinetics. Finally, PET-ABC was used to analyze a non-steady state dynamic [11C] raclopride study performed on a fully conscious rat administered either 2 mg.kg−1 amphetamine or saline 20 min after tracer injection. Results. PET-ABC yielded posterior point estimates for model parameters with smaller variance than WNLS, as well as probability density functions indicating confidence intervals for those estimates. It successfully identified the superiority of a 2-tissue compartment model to fit the simulated mixed model data. For the drug challenge study, the post observation probability of striatal displacement of the PET signal was 0.9 for amphetamine and approximately 0 for saline, indicating a high probability of amphetamine-induced endogenous dopamine release in the striatum. PET-ABC also demonstrated superior statistical power to WNLS (0.87 versus 0.09) for selecting the correct model in a simulated ligand displacement study. Conclusions. PET-ABC is a simple and intuitive method that provides complete Bayesian statistical analysis of single subject dynamic PET data, including the extent to which model parameter estimates and model choice are supported by the data. Software for PET-ABC is freely available as part of the PETabc package https://github.com/cgrazian/PETabc.

Funder

Australian National Imaging Facility

Australian Research Council

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference27 articles.

1. First human imaging studies with the explorer total-body PET scanner;Badawi;J. Nucl. Med.,2019

2. Handbook of Markov Chain Monte Carlo;Brooks,2011

3. Handbook of Approximate Bayesian Computationch;Fan,2018

4. Adaptive optimal scaling of Metropolis-Hastings algorithms using the Robbins-Monro process;Garthwaite;Commun. Stat. - Theory Methods,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3