Mechanistic modelling of oxygen enhancement ratio of radiation via Monte Carlo simulation-based DNA damage calculation

Author:

Lai YoufangORCID,Chi YujieORCID,Jia Xun

Abstract

Abstract Objective. Oxygen plays an important role in affecting the cellular radio-sensitivity to ionizing radiation. The objective of this study is to build a mechanistic model to compute oxygen enhancement ratio (OER) using a GPU-based Monte Carlo (MC) simulation package gMicroMC for microscopic radiation transport simulation and DNA damage calculation. Approach. We first simulated the water radiolysis process in the presence of DNA and oxygen for 1 ns and recorded the produced DNA damages. In this process, chemical reactions among oxygen, water radiolysis free radicals and DNA molecules were considered. We then applied a probabilistic approach to model the reactions between oxygen and indirect DNA damages for a maximal reaction time of t 0. Finally, we defined two parameters P 0 and P 1, representing probabilities for DNA damages without and with oxygen fixation effect not being restored in the repair process, to compute the final DNA double strand breaks (DSBs). As cell survival fraction is mainly determined by the number of DSBs, we assumed that the same numbers of DSBs resulted in the same cell survival rates, which enabled us to compute the OER as the ratio of doses producing the same number of DSBs without and with oxygen. We determined the three parameters (t 0, P 0 and P 1) by fitting the OERs obtained in our computation to a set of published experimental data under x-ray irradiation. We then validated the model by performing OER studies under proton irradiation and studied model sensitivity to parameter values. Main results. We obtained the model parameters as t 0 = 3.8 ms, P 0 = 0.08, and P 1 = 0.28 with a mean difference of 3.8% between the OERs computed by our model and that obtained from experimental measurements under x-ray irradiation. Applying the established model to proton irradiation, we obtained OERs as functions of oxygen concentration, LET, and dose values, which generally agreed with published experimental data. The parameter sensitivity analysis revealed that the absolute magnitude of the OER curve relied on the values of P 0 and P 1, while the curve was subject to a horizontal shift when adjusting t 0. Significance. This study developed a mechanistic model that fully relies on microscopic MC simulations to compute OER.

Funder

Cancer Prevention and Research Institute of Texas

National Cancer Institute

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3