Abstract
Abstract
Objective. X-ray spectral computed tomography (CT) allows for material decomposition (MD). This study compared a one-step material decomposition MD algorithm with a two-step reconstruction MD algorithm using acquisitions of a prototype CT scanner with a photon-counting detector (PCD). Approach. MD and CT reconstruction may be done in two successive steps, i.e. decompose the data in material sinograms which are then reconstructed in material CT images, or jointly in a one-step algorithm. The one-step algorithm reconstructed material CT images by maximizing their Poisson log-likelihood in the projection domain with a spatial regularization in the image domain. The two-step algorithm maximized first the Poisson log-likelihood without regularization to decompose the data in material sinograms. These sinograms were then reconstructed into material CT images by least squares minimization, with the same spatial regularization as the one step algorithm. A phantom simulating the CT angiography clinical task was scanned and the data used to measure noise and spatial resolution properties. Low dose carotid CT angiographies of 4 patients were also reconstructed with both algorithms and analyzed by a radiologist. The image quality and diagnostic clinical task were evaluated with a clinical score. Main results. The phantom data processing demonstrated that the one-step algorithm had a better spatial resolution at the same noise level or a decreased noise value at matching spatial resolution. Regularization parameters leading to a fair comparison were selected for the patient data reconstruction. On the patient images, the one-step images received higher scores compared to the two-step algorithm for image quality and diagnostic. Significance. Both phantom and patient data demonstrated how a one-step algorithm improves spectral CT image quality over the implemented two-step algorithm but requires a longer computation time. At a low radiation dose, the one-step algorithm presented good to excellent clinical scores for all the spectral CT images.
Funder
Agence Nationale de la Recherche
LabEx PRIMES
SIRIC LYriCAN+ Grant
H2020 European Institute of Innovation and Technology
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献