Assessment of valve regurgitation severity via contrastive learning and multi-view video integration

Author:

Kim SekeunORCID,Ren Hui,Charton JeromeORCID,Hu Jiang,Maraboto Gonzalez Carola A,Khambhati Jay,Cheng Justin,DeFrancesco Jeena,Waheed Anam A,Marciniak Sylwia,Moura Filipe,Cardoso Rhanderson N,Lima Bruno B,McKinney Suzannah,Picard Michael H,Li XiangORCID,Li Quanzheng

Abstract

Abstract Objective. This paper presents a novel approach for addressing the intricate task of diagnosing aortic valve regurgitation (AR), a valvular disease characterized by blood leakage due to incompetence of the valve closure. Conventional diagnostic techniques require detailed evaluations of multi-modal clinical data, frequently resulting in labor-intensive and time-consuming procedures that are vulnerable to varying subjective assessment of regurgitation severity. Approach. In our research, we introduce the multi-view video contrastive network, designed to leverage multiple color Doppler imaging inputs for multi-view video processing. We leverage supervised contrastive learning as a strategic approach to tackle class imbalance and enhance the effectiveness of our feature representation learning. Specifically, we introduce a contrastive learning framework to enhance representation learning within the embedding space through inter-patient and intra-patient contrastive loss terms. Main results. We conducted extensive experiments using an in-house dataset comprising 250 echocardiography video series. Our results exhibit a substantial improvement in diagnostic accuracy for AR compared to state-of-the-art methods in terms of accuracy by 9.60%, precision by 8.67%, recall by 9.01%, and F 1-score by 8.92%. These results emphasize the capacity of our approach to provide a more precise and efficient method for evaluating the severity of AR. Significance. The proposed model could quickly and accurately make decisions about the severity of AR, potentially serving as a useful prescreening tool.

Publisher

IOP Publishing

Reference21 articles.

1. Deep learning using rectified linear units (ReLU);Agarap,2019

2. A Simple framework for contrastive learning of visual representations;Chen,2020

3. Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical 4-chamber ultrasounds;Cheng,2022

4. An image is worth 16 × 16 words: transformers for image recognition at scale;Dosovitskiy,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3