Development of a Monte Carlo-based scatter correction method for total-body PET using the uEXPLORER PET/CT scanner

Author:

Bayerlein ReimundORCID,Spencer Benjamin A,Leung Edwin K,Omidvari NegarORCID,Abdelhafez Yasser G,Wang Qian,Nardo Lorenzo,Cherry Simon R,Badawi Ramsey D

Abstract

Abstract Objective. This study presents and evaluates a robust Monte Carlo-based scatter correction (SC) method for long axial field of view (FOV) and total-body positron emission tomography (PET) using the uEXPLORER total-body PET/CT scanner. Approach. Our algorithm utilizes the Monte Carlo (MC) tool SimSET to compute SC factors in between individual image reconstruction iterations within our in-house list-mode and time-of-flight-based image reconstruction framework. We also introduced a unique scatter scaling technique at the detector block-level for optimal estimation of the scatter contribution in each line of response. First image evaluations were derived from phantom data spanning the entire axial FOV along with image data from a human subject with a large body mass index. Data was evaluated based on qualitative inspections, and contrast recovery, background variability, residual scatter removal from cold regions, biases and axial uniformity were quantified and compared to non-scatter-corrected images. Main results. All reconstructed images demonstrated qualitative and quantitative improvements compared to non-scatter-corrected images: contrast recovery coefficients improved by up to 17.2% and background variability was reduced by up to 34.3%, and the residual lung error was between 1.26% and 2.08%. Low biases throughout the axial FOV indicate high quantitative accuracy and axial uniformity of the corrections. Up to 99% of residual activity in cold areas in the human subject was removed, and the reliability of the method was demonstrated in challenging body regions like in the proximity of a highly attenuating knee prosthesis. Significance. The MC SC method employed was demonstrated to be accurate and robust in TB-PET. The results of this study can serve as a benchmark for optimizing the quantitative performance of future SC techniques.

Funder

NIH

NIBIB

NCI

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3