Joint reconstruction and segmentation in undersampled 3D knee MRI combining shape knowledge and deep learning

Author:

Kofler A,Wald C,Kolbitsch C,V Tycowicz C,Ambellan F

Abstract

Abstract Objective. Task-adapted image reconstruction methods using end-to-end trainable neural networks (NNs) have been proposed to optimize reconstruction for subsequent processing tasks, such as segmentation. However, their training typically requires considerable hardware resources and thus, only relatively simple building blocks, e.g. U-Nets, are typically used, which, albeit powerful, do not integrate model-specific knowledge. Approach. In this work, we extend an end-to-end trainable task-adapted image reconstruction method for a clinically realistic reconstruction and segmentation problem of bone and cartilage in 3D knee MRI by incorporating statistical shape models (SSMs). The SSMs model the prior information and help to regularize the segmentation maps as a final post-processing step. We compare the proposed method to a simultaneous multitask learning approach for image reconstruction and segmentation (MTL) and to a complex SSMs-informed segmentation pipeline (SIS). Main results. Our experiments show that the combination of joint end-to-end training and SSMs to further regularize the segmentation maps obtained by MTL highly improves the results, especially in terms of mean and maximal surface errors. In particular, we achieve the segmentation quality of SIS and, at the same time, a substantial model reduction that yields a five-fold decimation in model parameters and a computational speedup of an order of magnitude. Significance. Remarkably, even for undersampling factors of up to R = 8, the obtained segmentation maps are of comparable quality to those obtained by SIS from ground-truth images.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Reference48 articles.

1. Segmentation-Aware MRI Reconstruction

2. Task adapted reconstruction for inverse problems;Adler;Inverse Problems,2021

3. Learned primal-dual reconstruction;Adler;IEEE Trans. Med. Imaging,2018

4. Modl: model-based deep learning architecture for inverse problems;Aggarwal;IEEE Trans. Med. Imaging,2018

5. Morphomatics: geometric morphometrics in non-euclidean shape spaces;Ambellan,2021a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3