A deep learning approach for automatic delineation of clinical target volume in stereotactic partial breast irradiation (S-PBI)

Author:

Kazemimoghadam MahdiehORCID,Yang ZiORCID,Chen Mingli,Rahimi Asal,Kim Nathan,Alluri Prasanna,Nwachukwu Chika,Lu WeiguoORCID,Gu XuejunORCID

Abstract

Abstract Accurate and efficient delineation of the clinical target volume (CTV) is of utmost significance in post-operative breast cancer radiotherapy. However, CTV delineation is challenging as the exact extent of microscopic disease encompassed by CTV is not visualizable in radiological images and remains uncertain. We proposed to mimic physicians’ contouring practice for CTV segmentation in stereotactic partial breast irradiation (S-PBI) where CTV is derived from tumor bed volume (TBV) via a margin expansion followed by correcting the extensions for anatomical barriers of tumor invasion (e.g. skin, chest wall). We proposed a deep-learning model, where CT images and the corresponding TBV masks formed a multi-channel input for a 3D U-Net based architecture. The design guided the model to encode the location-related image features and directed the network to focus on TBV to initiate CTV segmentation. Gradient weighted class activation map (Grad-CAM) visualizations of the model predictions revealed that the extension rules and geometric/anatomical boundaries were learnt during model training to assist the network to limit the expansion to a certain distance from the chest wall and the skin. We retrospectively collected 175 prone CT images from 35 post-operative breast cancer patients who received 5-fraction partial breast irradiation regimen on GammaPod. The 35 patients were randomly split into training (25), validation (5) and test (5) sets. Our model achieved mean (standard deviation) of 0.94 (±0.02), 2.46 (±0.5) mm, and 0.53 (±0.14) mm for Dice similarity coefficient, 95th percentile Hausdorff distance, and average symmetric surface distance respectively on the test set. The results are promising for improving the efficiency and accuracy of CTV delineation during on-line treatment planning procedure.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3