An evolutionary optimization algorithm for proton arc therapy

Author:

Zhao LeweiORCID,Liu Gang,Li Xiaoqiang,Ding Xuanfeng

Abstract

Abstract Objective. Proton arc plan normally contains thousands of spot numbers and hundreds of energy layers. A recent study reported that the beam delivery time (BDT) is proportional to the spot numbers. Thus, it is critical to find an optimal plan with a fast delivery speed while maintaining a good plan quality. Thus, we developed a novel evolutionary algorithm to directly search for the optimal spot sparsity solution to balance plan quality and BDT. Approach. The planning platform included a plan quality objective, a generator, and a selector. The generator is based on trust-region-reflective solver. A selector was designed to filter or add the spot according to the expected spot number, based on the user’s input of BDT. The generator and selector are used alternatively to optimize a spot sparsity solution. Three clinical cases’ CT and structure datasets, e.g. brain, lung, and liver cancer, were used for testing purposes. A series of user-defined BDTs from 15 to 250 s were used as direct inputs. The relationship between the plan’s cost function value and BDT was evaluated in these three cases. Main results. The evolutionary algorithm could optimize a proton arc plan based on clinical user input BDT directly. The plan quality remains optimal in the brain, lung, and liver cases until the BDT was shorter than 25 s, 50 s and 100 s, respectively. The plan quality degraded as the input delivery time became too short, indicating that the plan lacked enough spot or degree of freedom. Significance. This is the first proton arc planning framework to directly optimize plan quality with the BDT as an input for the new generation of proton therapy systems. This work paved the roadmap for implementing such new technology in a routine clinic and provided a planning platform to explore the trade-off between the BDT and plan quality.

Funder

National Natural Scicence Foundation of China

Ion Beam Application

William Beaumont Hospital

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3