H-SegNet: hybrid segmentation network for lung segmentation in chest radiographs using mask region-based convolutional neural network and adaptive closed polyline searching method

Author:

Peng TaoORCID,Wang Caishan,Zhang You,Wang JingORCID

Abstract

Abstract Chest x-ray (CXR) is one of the most commonly used imaging techniques for the detection and diagnosis of pulmonary diseases. One critical component in many computer-aided systems, for either detection or diagnosis in digital CXR, is the accurate segmentation of the lung. Due to low-intensity contrast around lung boundary and large inter-subject variance, it has been challenging to segment lung from structural CXR images accurately. In this work, we propose an automatic Hybrid Segmentation Network (H-SegNet) for lung segmentation on CXR. The proposed H-SegNet consists of two key steps: (1) an image preprocessing step based on a deep learning model to automatically extract coarse lung contours; (2) a refinement step to fine-tune the coarse segmentation results based on an improved principal curve-based method coupled with an improved machine learning method. Experimental results on several public datasets show that the proposed method achieves superior segmentation results in lung CXRs, compared with several state-of-the-art methods.

Funder

Cancer Prevention and Research Institute of Texas

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A robust ensemble deep learning framework for accurate diagnoses of tuberculosis from chest radiographs;Frontiers in Medicine;2024-07-22

2. Delineation of Prostate Cancer Via Enhanced AI-Based Algorithm In Ultrasound Images;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

3. Speech based emotion recognition by using a faster region-based convolutional neural network;Multimedia Tools and Applications;2024-04-02

4. Chest x-ray diagnosis via spatial-channel high-order attention representation learning;Physics in Medicine & Biology;2024-02-13

5. Adaptive Medical Image Segmentation Using Deep Convolutional Neural Networks;2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario (ICPSITIAGS);2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3