A clinically relevant online patient QA solution with daily CT scans and EPID-based in vivo dosimetry: a feasibility study on rectal cancer

Author:

Chen Liyuan,Zhang Zhiyuan,Yu Lei,Peng Jiyou,Feng Bin,Zhao Jun,Liu Yanfang,Xia Fan,Zhang Zhen,Hu WeigangORCID,Wang JiazhouORCID

Abstract

Abstract Objective. Adaptive radiation therapy (ART) could protect organs at risk (OARs) while maintain high dose coverage to targets. However, there is still a lack of efficient online patient quality assurance (QA) methods, which is an obstacle to large-scale adoption of ART. We aim to develop a clinically relevant online patient QA solution for ART using daily CT scans and EPID-based in vivo dosimetry. Approach. Ten patients with rectal cancer at our center were included. Patients’ daily CT scans and portal images were collected to generate reconstructed 3D dose distributions. Contours of targets and OARs were recontoured on these daily CT scans by a clinician or an auto-segmentation algorithm, then dose-volume indices were calculated, and the percent deviation of these indices to their original plans were determined. This deviation was regarded as the metric for clinically relevant patient QA. The tolerance level was obtained using a 95% confidence interval of the QA metric distribution. These deviations could be further divided into anatomically relevant or delivery relevant indicators for error source analysis. Finally, our QA solution was validated on an additional six clinical patients. Main results. In rectal cancer, the 95% confidence intervals of the QA metric for PTV ΔD 95 (%) were [−3.11%, 2.35%], and for PTV ΔD 2 (%) were [−0.78%, 3.23%]. In validation, 68% for PTV ΔD 95 (%), and 79% for PTV ΔD 2 (%) of the 28 fractions are within tolerances of the QA metrics. one patient’s dosimetric impact of anatomical variations during treatment were observed through the source of error analysis. Significance. The online patient QA solution using daily CT scans and EPID-based in vivo dosimetry is clinically feasible. Source of error analysis has the potential for distinguishing sources of error and guiding ART for future treatments.

Funder

National Key Research and Development Program of China

Shanghai Committee of Science and Technology Fund

Xuhui District Artificial Intelligence Medical Hospital Cooperation Project

Key Clinical Specialty Project of Shanghai

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3