Paired conditional generative adversarial network for highly accelerated liver 4D MRI

Author:

Xu DiORCID,Miao Xin,Liu Hengjie,Scholey Jessica E,Yang Wensha,Feng Mary,Ohliger Michael,Lin Hui,Lao Yi,Yang YangORCID,Sheng KeORCID

Abstract

Abstract Purpose. 4D MRI with high spatiotemporal resolution is desired for image-guided liver radiotherapy. Acquiring densely sampling k-space data is time-consuming. Accelerated acquisition with sparse samples is desirable but often causes degraded image quality or long reconstruction time. We propose the Reconstruct Paired Conditional Generative Adversarial Network (Re-Con-GAN) to shorten the 4D MRI reconstruction time while maintaining the reconstruction quality. Methods. Patients who underwent free-breathing liver 4D MRI were included in the study. Fully- and retrospectively under-sampled data at 3, 6 and 10 times (3×, 6× and 10×) were first reconstructed using the nuFFT algorithm. Re-Con-GAN then trained input and output in pairs. Three types of networks, ResNet9, UNet and reconstruction swin transformer (RST), were explored as generators. PatchGAN was selected as the discriminator. Re-Con-GAN processed the data (3D + t) as temporal slices (2D + t). A total of 48 patients with 12 332 temporal slices were split into training (37 patients with 10 721 slices) and test (11 patients with 1611 slices). Compressed sensing (CS) reconstruction with spatiotemporal sparsity constraint was used as a benchmark. Reconstructed image quality was further evaluated with a liver gross tumor volume (GTV) localization task using Mask-RCNN trained from a separate 3D static liver MRI dataset (70 patients; 103 GTV contours). Results. Re-Con-GAN consistently achieved comparable/better PSNR, SSIM, and RMSE scores compared to CS/UNet models. The inference time of Re-Con-GAN, UNet and CS are 0.15, 0.16, and 120 s. The GTV detection task showed that Re-Con-GAN and CS, compared to UNet, better improved the dice score (3× Re-Con-GAN 80.98%; 3× CS 80.74%; 3× UNet 79.88%) of unprocessed under-sampled images (3× 69.61%). Conclusion. A generative network with adversarial training is proposed with promising and efficient reconstruction results demonstrated on an in-house dataset. The rapid and qualitative reconstruction of 4D liver MR has the potential to facilitate online adaptive MR-guided radiotherapy for liver cancer.

Funder

Center for Scientific Review

DOD Peer Reviewed Cancer Research Program

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3