Real-time nonstandard-shaped gold fiducial marker tracking on x-ray fluoroscopic images for prostate radiotherapy

Author:

Sakata Yukinobu,Umene Kenta,Asaka Saori,Hirai Ryusuke,Ishikawa Hitoshi,Mori Shinichiro

Abstract

Abstract Objective. The prostate moves in accordance with the movement of surrounding organs. Tumor position can change by ≥3 mm during radiotherapy. Given the difficulties of visualizing the prostate fluoroscopically, fiducial markers are generally implanted into the prostate to monitor its motion during treatment. Recently, internally motion guidance methods of the prostate using a 99.5% gold/0.5% iron flexible notched wire fiducial marker (Gold Anchor® , Naslund Medical AB, Huddinge, Sweden), which requires a 22 gauge needle, has been used. However, because the notched wire can retain its linear shape, acquire a spiral shape, or roll into an irregular ball, detecting it on fluoroscopic images in real-time incurs higher computation costs. Approach. We developed a fiducial tracking algorithm to achieve real-time computation. The marker is detected on the first image frame using a shape filter that employs inter-class variance for the marker likelihood calculated by the filter, focusing on the large difference in densities between the marker and its surroundings. After the second frame, the marker is tracked by adding to the shape filter the similarity to the template cropped from the area around the marker position detected in the first frame. We retrospectively evaluated the algorithm’s marker tracking accuracy for ten prostate cases, analyzing two fractions in each case. Main results. Tracking positional accuracy averaged over all patients was 0.13 ± 0.04 mm (mean ± standard deviation, Euclidean distance) and 0.25 ± 0.09 mm (95th percentile). Computation time was 2.82 ± 0.20 ms/frame averaged over all frames. Significance. Our algorithm successfully and stably tracked irregularly-shaped markers in real time.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3